

v : of
ILLINOIS m

AT UR3ANA-CNAMPAIGN
ENGINEERING

/C
- ^ ENGINEERING LIBRARY ' ^

7 Jl 63<L. UN|VERSITy OF ILLINOIS ^

2 2 lL URBANA, ILLINOIS

1

yyilrLiitiiifi

)IS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801

CAC Document Number 234

Optimization of a Relational-Algebra

Query to a Distributed Database

Using Statistical Sampling Methods

by

David A. Willcox

August 1, 1977

j he Library o! the

MAY 2

'p.rsity or i

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books
are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

JUN6

L161— O-1096

CAC Document Number 234

Optimization of a Relational-Alqebra Query
to a Distributed Database

Using Statistical Sampling Methods

by

David A. foillcox

Prepared for the
Command and Control Technical Center

WVwMCCS ADP Directorate
of the Defense Communications Agency

Washington , D. C.

under contract
DCA100-75-C-0021 •-

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

August 1, 1977

Approved for release:
Peter A. Alsberg, Prin est igator

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/optimizationofreOOwill

Table of Contents

Page

I

.

INTRODUCTION 1

II

.

STATEMENT OF THE PROBLEM 5

Representation of the Query 5

Distributed Database 6

A Simplifying Assumption 7

Distributed Optimization 8

III. STATE OF THE ART OF RELATIONAL QUERY OPTIMIZATION 10
Single-Site 10
Multiple-Site 13

IV. SAMPLING 16
Sampling for Simple Select Functions 17
Join Prediction 26
Generalized Query Sampl ing 31
Prediction of Project Output 40
Pathological Cases 41

V. AN INTEGER LINEAR PROGRAM FOR OPTIMAL
QUEPY STRATEGIES 44

Definition of the Integer Linear Program 44
Notation 47
Solving the ILP as a Linear Program 48
An Algorithm for Finding Integer Solutions 58

VI. CONCLUSIONS 60

REFERENCES 61

APPENDIX A 62

I. INTRODUCTION

In this thesis I will consider the problem of optimizing a

query expressed in a particular canonical form when the data

needed to service the query is distributed among several distinct

computers. The optimization is intended to minimize (or at least

reduce) the total cost ot servicing the query. The individual

"host" computers can transfer data among themselves via some

communication facility such as phone lines or a packet-switched

network. On the assumption that communication between computers

is relatively slow and costly (in ARPANET, for instance, host-

host bandwidth is at least 50-100 times slower than that between

a computer and its local disk system), the global optimization

proolem is primarily that ot minimizing the amount of data which

must ultimately be transferred between computers. All other

factors will have a relatively minor effect on query cost. I am

concerned primarily with this global problem of reducing network

traffic resulting from the given query. Local optimization, or

optimization of that part of the query which involves only a

single site, is not considered. A fairly intuitive description

ot the problem ana my approach to its solution are given below.

Consider the following problem. A company maintains a

database with information on parts supplied by a group of

suppliers. The database is split into two pieces. One piece,

called PARTS, contains descriptions of all of the parts used by

the company in its operations. The other piece, called

SUPPLIERS, contains information on each supplier together with a

list of parts it supplies. (For each supplier, there is one

record for each part it supplies.) It is necessary to get a list

of all suppliers in Illinois which supply square, green parts.

If both pieces are stored on the same computer, this query

can be serviced in a straightforward manner by

1) Looking thru PARTS and constructing SG-PARTS, a list of all

square, green parts,

2) Looking thru SUPPLIERS and constructing I-SUPPLIERS, a list

of Illinois suppliers and the parts they supply, and

3) Combining the two lists to find suppliers in I-SUPPLIERS

who supply parts listed in SG-PARTS.

Suppose, however, that the company owns two computers.

These computers can communicate with each other via a medium

speed communication line. Further suppose that each computer has

only one of the two pieces of the database. How then can the

query best be serviced? It would be possible, of course, to send

one of the two pieces over the line and then process the query as

before. However, if the pieces are very large, this would be

very expensive.

A much better approach would be to form the two lists SG-

PARTS and I-SUPPLIERS on the computers with the respective pieces

and then send one of the lists. On the assumption that these

restricted lists are much smaller than the original database

pieces (they certainly can't be any larger), this will greatly

reduce the time and cost to service the query. Since either SG-

PARTS or I-SUPPLIERS must be transmitted, but not both, it is

clear that the cheapest way to service the query would be to ship

the smaller of the two lists.

It would be possible, especially in this simple case, to

decide which list is smaller by first forming the lists on their

respective hosts and then comparing their sizes. However, this

technique does not easily generalize to the more complex queries

which will be considered later. In this thesis I will describe a

more general approach which will allow the decision to be made

before any significant processing of the actual query is started.

This will necessitate a priori estimates of the sizes of SG-PARTS

and I-SUPPLIERS. The "classical" method for making this

prediction involves the assumption of independence between fields

of a database. (See, for example, [Wong and Youssefi 76],

(Hammer and Chan 76], and [Vallarino 76].) If it is known that

25% of all parts are green and 20% of parts are square (ignoring

the question of where that information is obtained) , the

independence assumption implies that 25%x20% = 5% of all parts

are square and green. This assumption has one major drawback.

There is no way to get any quantitative estimate or bound for the

error in the estimate. There will be cases where independence is

a poor moael of the state of things, and there is no way to know,

without actually running the query, when a given query has hit

such a case.

Instead of assuming independence, it is possible to

forecast the query performance by taking a small random sample of

the database pieces and using those samples to estimate the sizes

of the intermediate results. To estimate the size of SG-PARTS,

for instance, one could take a small sample of PARTS and find out

what percent of the parts in the sample are square and green. If

there are 10,000 parts, and 10% of the sampled parts are square

and green, then it is reasonable to assume that about 10% (or a

total of 1000) of all parts are square and green. This estimate

won't always be accurate, either. However, it is possible to

obtain a precision for the estimate using well-known statistical

techniques. This precision will depend on several factors,

including the size of the sample and the estimate itself. It is

expressed as an absolute error bound and a "level of confidence"

that the actual error is less than the given error bound.

In this thesis, I extend this approach to a general query

expressed in Codd's relational algebra [Codd 70]. By taking

appropriate samples of the pieces in the database, it is possible

to estimate the volume of output from each intermediate operation

in the query. These volume estimates can be used to develop the

parameters to an integer linear programming (ILP) problem which

can be used to find an optimal strategy for the query in its

specified form. The resulting strategy might not be globally

optimal because permutations and other manipulations of the query

operations are not considered, but it will usually find the best

strategy based upon the given order of operations.

Because setting up the database samples will be fairly

expensive, and because solving the ILP is expensive (even with

the simplification which I will present) , the optimization

technique will be useful only for fairly large, expensive

queries. When the database is large, the expense incurred in

doing the optimization can be recovered by improved query

performance.

II. STATEMENT OF THE PROBLEM

Representation of the Query

The queries discussed in this thesis will be expressed in

the relational algebra first described by Codd [70]. Any reader

not familiar with the relational database model should refer to

:hat paper first. The important concepts for understanding this

thesis are those of a relation, tuple and domain, and the

relational operators join, select (also called restrict) and

project. The exact format in which the query is expressed by the

user is unimportant. It is assumed here that before any

optimization is attempted the query will be parsed into an

internal tree format. Each internal tree node represents a

relational operator, and each terminal node is a relation from

the database. The output from any relational operator is a

relation, so each intermediate operand in the query (the output

of any operator) is a relation.

The query in the supplier-parts example of Chapter I might

be represented as a tree something like this:

I

4

I

3

/ \
/ \

/ \
/ \

1 2

I I

SUPPLIERS PARTS

The operations at the internal, numbered nodes are as follows:

Node 1 - Select tuples with STATE-" Illinois"

.

Node 2 - Select tuples with COLOR*"green" and SHAPE="square"

.

Node 3 - Join on domain SUPPLIER*.

Node 4 - Project out domain NAME.

Distributed Database

The relations which make up the database in question are

assumed to be distributed among a number of different computers.

Some kind of communication facility (the "network") is assumed to

exist. This could be either a packet-switched, store-and-forward

network (e.g. ARPANET or CYCLADES) , or a set of dedicated phone

lines. The network allows each computer (called a "host") to

communicate with any other computer on the network. Therefore,

all of the database relations are available to every computer on

the network, even though no one computer has copies of all of the

relations.

It is also possible that several copies of each relation

are stored at different computers. A database system which

allows multiple copies of the relations has two advantages over

one that maintains only single copies. The major advantage is

that this will increase the availability of the data to users.

If there are several copies of each relation, the probability

that data is unavailable due to a computer (or computers) being

down is greatly reduced. If each computer is up 90% of the time,

then each relation in a single-copy system would be available 90%

of the time. If two copies of each relation were maintained,

then each relation would be available 99% of the time, assuming

that the availabilities of the different machines are

independent.

A second advantage of a multicopy system is that the

possibilities for reducing query costs are increased. If there

are several copies of each file, it is more likely that there

will be a copy where it is most needed to allow a cheap strategy

for a given query. This is a purely intuitive argument, and no

attempt has been made to evaluate how much effect multiple copies

will have on the optimal strategy. In no event will multiple

copies degrade the performance of a retrieval, however.

A Simplifying Assumption

The database considered here is one which is derived from

some original "goal" relation GOAL. Each database relation

represents a small subset of GOAL obtained by picking a subset of

the domains and then removing duplicate tuples. Splitting the

large goal relation up into subrelations has two advantages. If

the goal relation is not in Codd ' s third normal form, then it is

possible to split it up in such a way as to produce subrelations

which are in third normal form (assuming that the functional

dependencies between domains are known) [Codd 72] . This process

is called normalization. It is much easier to maintain the

internal consistency of a database which has relations in third

normal form than one which does not. Also, if GOAL is

unnorraalized, this implies that there is at least some redundancy

in the data. The data which represent some relationship may be

replicated many times. Decomposing GOAL into normalized

subrelations will remove these redundancies.

It is possible to split up any goal relation into smaller

relations in such a way as to preserve the functional

relationships between domains. (Bernstein [76] gives one

algorithm to do this normalization.) These database relations

collectively will contain all of the information contained in the

goal relation, so it would be possible to reconstruct the goal

relation exactly by recorabining the database relations.

Unfortunately, there is no guarantee in the general case that

combining two of the database relations using a "natural" join

will produce a result which accurately reflects the original

aata. It might be possible to get invalid associations between

domain values.

The query operations I consider will be limited to those

which reconstruct a portion of GOAL. This places no restriction

on the possible select and project operations, but it does

constrain the choice of joins. It implies that the join of any

pair of relations is unique. There could be several ways to

obtain this join (it might, for instance, be possiole to use any

of several equivalent domains as the joining domain) but the

result will be the same however it is produced. The join of any

group of domains is also unique. This implies that, for the set

of allowed operations, the joins are associative.

D istributed Optimization

The oandwidth for communications between computers in the

network is very low compared to the bandwidth of local disk

accesses. Data rates of tens of kilobaud are typical for

networks as compared to a few megabaud for typical disks. On the

assumption that processing within the CPU takes place at a much

higher rate than input/output, it follows that a minimization of

query response time can be reduced to a minimization of total

network traffic. Wong [77] makes a similar argument that

minimization of network traffic will minimize query cost.

Therefore, purely local considerations will have a minimal effect

upon the allocation of query operations to network hosts and can

be ignored. (Local optimization can, of course, be performed

after global optimization to improve the performance of that part

of a query which ends up at a given host.) To minimize total

network traffic, it is clearly necessary to be able to estimate

the sizes of the intermediate operands (the objects which might

get transmitted) in the query. Chapter IV describes a method for

making such estimates. In that chapter, a procedure is described

which will produce samples of the individual database relations.

By appropriately interpreting the results of a query run against

this database sample, it will be possible to forecast the result

of running the query against the whole database. Chapter V

describes an integer linear programming model which will yield an

optimal query strategy based upon the results of sampling. But

first, some of the approaches to distributed and/or relational

query optimization which have appeared previously in the

literature are discussed in Chapter III.

ltf

III. STATE OF THE ART OF RELATIONAL QUERY OPTIMIZATION

Single-Site

Most of the work on optimization of relational queries has

been concerned with single-site databases only. As is pointed

out by Wong [77J, the problems involved in optimizing a

distriouted query are much different from those encountered in

the single-site case. Therefore, the two results described here

are given primarily for background purposes.

Tree Permutations . One form of optimization, described by

Smith and Chang f 7 5 J , involves the rearrangement of the order in

which operations are performed so the cost of the query is

reduced. The procedure they describe works on a query expressed

as a tree. Each node of the tree is an operator, such as project

or join. They identify a number of possible types of tree

permutations which have the effect of altering the order in which

the operations are performed. They also identify a number of

different algorithms for performing each type of operation.

Associated with each algorithm is a measure of its relative cost

and any requirements on each of its input relations. (The

cheapest algorithm for join, for instance, can only be used if

one of the input relations has an index available for the joining

domain.) Also, relevant attributes of the output from each

algorithm are noted. For example, the output might be sorted on

some domain value. The general effect of their procedure is to

perform inexpensive operations, such as restrict and project, as

early as possible to reduce the total number of tuples in

11

consideration, witnout masking useful features like indexes from

the more expensive operations.

A simplified version of this procedure could be used as a

first step in optimizing a distributed query. Such factors as

the specific algorithm used for performing each operation and the

presence or absence of indexes can probably be ignored, but it

will be useful to "move down" the project and restrict operations

as low in the tree as possible.

Quer y Decomposition . Another approach, described by Wong

and Yousseti [76], works on the very different kind of query used

in INGRESS. The user's view of the database in INGRESS is simply

the cartesian product of all of the relations in the database.

The query is expressed in the form of a restrict on this

cartesian product. There is no join operation per se. An

equivalent function is performed by an appropriate select

function on the joining domain. The query includes a list of

domains to be "projected out" from the user view after the select

is applied. The example from Chapter I (a list of Illinois

suppliers who supply square, green parts) would be expressed in

INGRESS in a form something like this:

RETRIEVE (SUPPLIERS. NAME) WHERE
(SUPPLIERS. STATE * "Illinois"

& PARTS. COLOR = "green"
& PARTS. SHAPE "square"
& PARTS. SUPPLIER* = SUPPLI ERS .SUPPLIER!)

A query in this form is decomposed by alternating between

"detachment" and "tuple substitution". Detachment is the process

of splitting off subqueries which have only one relation in

12

common with the rest of the query. (That is, there is only one

relation which appears in both the detached subquery and the part

of the original query that is left after detachment.) Tuple

substitution is the successive substitution of tuple values

retrieved by one subquery into the expression for another

subquery. In effect, this produces a separate subquery for each

tuple value substituted. Generally, there will be many different

possible decompositions of any given query. One possible

decomposition of the above sample query will yield two successive

subqueries, the first of which is

RETRIEVE (PARTS. SUPPLIER*) INTO(temp) WHERE
(PARTS. COLOR * "green"

& PARTS. SHAPE » "square")

This query produces a list in "temp" of supplier numbers for

suppliers who supply square, green parts. For each supplier

number "supplier!" in temp, tuple substitution would generate a

query in the form

RETRIEVE (SUPPLIERS. NAME) WHERE
(SUPPLIERS. STATE * "Illinois"

& SUPPLIERS. SUPPLIER! = supplier!)

The result returned by the original query is the aggregate of all

names returned by the various instances of this final query.

A query is optimized by first reducing it (by detachment)

into a set of irreducible components and then selecting one

subquery to use for tuple substitution. That subquery is

processed first, and its output is then used as input to tuple

substitution. This produces a set of subqueries which may be

13

further reducible, and the process iterates. Effective

optimization depends upon selecting the proper subquery to use

for tuple substitution, and this in turn requires some estimate

of the cost of processing each of the subqueries. Wong and

Youssefi suggest three possible methods for obtaining these

estimates. Two involve an assumption of independence among the

relations and their fields. The third suggestion is to sample

the individual relations. Unfortunately, no indication is made

of how the sampling should be done. As will be pointed out in

Chapter IV, simply sampling each relation and running the queries

on the samples usually will not give a good estimate of query

performance.

Multiple -Site

Some "early" work on the optimization of non-relational

queries in a network environment was done by Chu (69] and Levin

[74] . They were concerned with the allocation of copies of files

to network hosts so as to minimize the total database usage cost:

the cost of storing files plus the cost of network data

transmissions. They presented cost functions based upon the

assumption that query traffic generated at each host was known

beforehand, and described tractable methods for finding an

optimal assignment. Their results are not applicable to the

problem addressed in this thesis for two reasons. Theirs is a

file allocation problem, whereas this thesis is concerned with

the optimization of queries after the files have already been

allocated to network hosts. More important, however, is the fact

that the queries used in their models were simple. The query

14

used by Levin was a bit more complex than that used by Chu. It

consisted of a message to one copy of a program. The program

would in turn send retrieval requests to one copy of a single

file. (Chu's query sent requests directly from the originating

host to the host with the file, bypassing any reference to

programs.) No single query would result in traffic to more than

one file. This model is incapable of modelling the complex

interactions between files (relations) which will occur in a

distributed, relational database.

The more reasonable approach used in SDD-1 (the System for

Distributed Databases under development by Computer Corporation

of America) was described by Wong [77] . He treats distributed

query optimization with a modified form of query decomposition.

Basically, Wong's approach is to define three different "views"

of the database. As before, the "user view" is the cartesian

product of all relations in the database. The "distribution

view" consists of one relation per host, each containing the

cartesian product of all of the relations stored at that host.

The "local view" is the individual relations stored at an

individual site. Wong uses a modified form of query

decomposition to optimize the query with respect to the

distribution view. This modified decomposition only uses tuple

substitution (which manifests itself in this case as a series of

moves of relations or pieces of relations between network nodes)

and the process of splitting off single-relation (i.e. single-

host) pieces of the query. This yields a set of subqueries, each

of which references only relations local to one host, and a Mst

15

of moves of intermediate operands (the outputs from individual

subqueries) between network hosts. Each local subquery can then

be optimized using normal query decomposition.

This technique suffers from the same problems as single-

site decomposition. It is dependent upon some estimate of the

sizes of the outputs from individual subqueries. I have

discussed above the inadequacies of the techniques in [Wong ana

Youssefi 76] for making these estimates. Wong's technique also

does not allow multiple copies of individual relations. (SDD-1

actually supports multiple copies, but an individual user only

has access to a single copy at any one time.) This unnecessarily

restricts the scope of application of the technique.

16

IV. SAMPLING

In this chapter, a new approach to distributed query

optimization is described. The concept of sampling the component

parts of the database to forecast the operation of a query is

discussed in detail. Chapter V gives one method by which the

results of such sampling can be used to find an optimal query

strategy.

Typically, authors who have needed to know the sizes of

intermediate operations have made an assumption of independence

between the domains (fields) in the database. (See, for

instance, [Wong 77].) Using sampling to make these predictions

has one major advantage over the independence assumption: it is

possible to get a theoretically valid bound for the error in the

estimate. There is therefore some basis for assuming that the

estimates are reasonably correct. There is no a priori

indication that estimates arrived at using an independence

assumption are accurate. In fact, database domains are often not

independent. In a personnel file, for instance, one would expect

a strong correlation between such fields as "Job Title", "Years

of Service", and "Salary".

Several different query types of increasing complexity will

be discussed below. Two fairly simple queries will be covered

first to introduce the concepts of sampling. Finally, a

"generalized" sampling method will be discussed which will allow

optimization of the archetypical query described in Chapter II.

17

Sampling f or Simple Select Functions

The simplest query to be discussed consists of a select

function for each of two relations and a binary operator (which

could be, but need not be, a join) to be performed on the results

of the selects. It is assumed that the relations in question are

stored on different host computers, so at least one of the

intermediate results must be shipped over the net. It is further

assumed that it makes no difference where the final result is

produced, so the choice of where to do the binary operation

depends only on tae volumes of the intermediate results. To give

an example, the model query looks something like (R|B)*(S|B).K S

The notation (R|B) specifies a Boolean select function BR to be

applied to relation R, and the symbol * denotes a join. If

relation R is stored on host 1 only and relation S is on host 2

only, then the output of (R|B
R) should be shipped to host 2 if

and only if the volume (defined as the number of bytes in a tuple

multiplied by the number of tuples) of (R|B) is less than the

volume of (S|B
g). This is written as |(R|BR)| < |(S|BS)|, where

|R| denotes the volume of relation R. From now on, for

notational simplicity, it is assumed that all tuples are the same

size, and the volume is taken to be the number of tuples. A

tuple size factor could be easily added if necessary.

Sampling a relation . What is needed is an estimate of P,

the proportion of tuples in a relation which satisfy the select

function. The approach made here is to take a random sample of

the tuples in the relation and find p, the proportion of tuples

in the sample which satisfy the select function. It should be

18

obvious that p is an estimate of P, but how good is it? It seems

reasonable to assume that a larger sample will give a more

accurate estimate, but a quantitative error estimate would be

desirable. For sampling "without replacement" (that is, no tuple

can appear in the sample more than once) Yamane [67 p. 98] gives

a formula which relates p, the sample size n, the population size

N (i.e. the number of tuples in the relation) , and the precision

d. Omitting the lengthy derivation, the formula is

2 m (N-n)z
2
p(l-p)

u nN K±)

The positive constant z is a reliability factor which is derived

from the normal distribution function. It is related to the

desired "confidence level" k by the formula

k * F(z)-F(-z) - 2F(z)-l.

F(x) is the cumulative normal probability function

x
F(x) - | f(y,0,l)dy

-CD

where f(y,m,s) is the probability density function for the normal

distribution with mean m and standard deviation s. For a

confidence level of 95% (k - 0.95), z is 1.96. A z of 3 will

give a confidence level of 99.7%. A confidence level of 95% (for

instance) means that | P—p I can be expected to be less than d 95%

of the time.

It should be noted here that this and later formulas for

the precision d are not exact, but rather are "unbiased"

19

estimates. To get an exact value for d generally requires an

exact value for some parameter (p in this case) which could only

be obtained by searching the entire database. In this case,

using P in place of p in (1) would yi«ld an exact value for d.

This is clearly impractical, given that P is the quantity being

estimated in the first place. The fact that the formula yields

an inexact figure, the precision of which is not computed, is

generally not bothersome; it is a second-order effect.

Example: Start with a relation containing 10 tuples.

After taking a random sample of 500 tuples, it is found that 50

satisfy the select function. Therefore, p=0.1. Evaluating (1)

(using z=1.96) gives d=0.026. This means that P will be between

0.074 and 0.126 95% of the time. (This phrasing may be a little

misleading. P is a constant, and p is an estimate of it. What

is really involved is the confidence that the estimate is

accurate within precision d.) Therefore, it would be reasonable

to expect 10,000 + 2600 tuples from the full relation to satisfy

the select function.

In a practical case, it will be useful to know how large

the sample should be to give the desired precision. Equation (1)

can be easily inverted to give

n - N
;
2
Pi1-P) (2,

Nd +z
z
p(l-p)

Since n depends on p, it will be necessary to take a small sample

of the relation to get a provisional value for p. This

provisional p can be used to find the necessary n. If this n is

20

greater than the original sample size, then the sample must be

enlarged. This new sample will yield a new value for p, which

will give a new value for n. The process can be repeated until

the desired precision is obtained. When constructing a semi-

permanent sample, p=0.5 will give a worst-case value for n.

Yamane says that if n is larger than N/2, the actual precision

will be greater than that predicted by (1) .

Table 1 was adapted from [Yamane 67] . It shows the

required sample sizes for various population sizes and

precisions.

Exper imental results . In order to gain some empirical

evidence for the value of sampling, some experiments were run on

a test database. This database contains one relation with 10,000

tuples of information on fuel storage at military sites.

Twenty-nine queries were run against the whole database and

against two different samples, with the results presented in

Table 2. Column 1 indicates the number of tuples actually

produced by the query when it was run against the whole database.

Column 2 gives the query output volume estimated from a simple

random sample of 100 tuples, with a precision computed from

formula (1) . The final column is an estimate of query output

volume based upon "classical" independence assumptions. (The

method used to obtain the figures in column 3 will be described

later in this chapter.) In most cases, sampling yielded an

estimate which was accurate to well within the theoretical

.1 iraits. In addition, the estimates obtained through sampling

were generally more accurate than those obtained from classical

21

ii

ex

4J

c
QJ

U
u
Q)

CL

U
01

u
fi

(1)

>
•H
4-1

C
o
u

•o

u
II

a

CM

H
01

01

—IP3

a, •

s in
(0 •

Ti 3

I

(0 u
> c
u o
a) H
jj 01

c H
H u

0)

QJ u
u a
c
Q) u
a O
-i u-l

c QJ

o CM

u H

a, c#>

CD a
cr, e

03

CO

+1

CO ON 3 H CM ID
n r- O CN vO CTi H

<* in x> m m r-

SI ON on r-~ oo co m o~\ h oo "=r —

i

S)
m m3 00 OTi si —1 CM *lO vO CD Jl SI
r~ r- r— r- ao oo ao 00 CO CO 00 00 CTi

o in
+1

—

1

u
10 c
> o
u rH

<U en

4-) •H ae

c u <»

•H QJ
u

+1

QJ a,
U
c u
cu O
T3 'H 0*
H to
M OJ +1
c N
o •H
cj 01

dP OJm —

(

c*>

j> a CM

e +1
10

GO

tfp

rH
+ 1

c
o
•H
4J OJ

(0 N
—I •H
3 U)

a
o
d,

n n
in in si
CM CN SI
r- co o\

> c*1 3 H f~m 3 *r r~ cn
o> s a 3 a

G\ •—I vjO ^D CM
m 1^ CTi H ii
H H H M ,N

in n h r^ co
co r-i <~n vo oo
IN n CI ><! i"!

-Q £1 Q Q

Q Q Q Q Q

a jq a a a

ro oo oo r~ vo f cn •=T IO CTl CN CN CN SI CTl ON
c£> in ^ 3CD i£> ^S" si in en *T CN r- 30 ro J>
co *r in m ko r- co a\ cr\ on H CN CN ro T T
r—1 H <-t i—1 rH H H —1 rH rH CN CN CN CN CN CN

a a a a a

a .o. a q q

m co .n h a
3 <—I C3 IX) 3
a> h to "^ md
cn to to to co

QflQQfl

3 3 H io '/I

on j\ cn in cn

3 n in 3 ^
3" tj< «* m in

a -Q

CN r-~ r^ SI
T H vO SI
co J") CO m
rH m CO CN

SI p» 3H.N
CO CO

-
) o> 0""i

r~ r- in cn cn
Hl^ 3 CNC1
CN CN CO CO PO

in co h ^r
P- iN cO x
co <a> t -=r

CO CO CO «3" «3"

CT> CTi CTi C7) CTl

^f t ^r in in
CFt 0\ CTl CXi CTi

3 -O 3 CO IO H ^f vO CO Ji
*J ^ LO n 1^1 CO vO iO lO cO
CO iO CO CO CO CO CO CO CO CO

3 CN H Ul in
SI H N CN CO
m in in in in

in cn oo -N CO
^ in incDio
in in in m in

£1 Q
ciini^
CN CTl "3"

co o r~

O Q Q Q

r» r~ on on en m m h co *r
oo h ^ IO r- 3 !N 'JiniD
I— C0COCOC0 0TN CXi CT) 0Tl CT)

co^simcN ^f r- comco
O CN 3 CI3 IN H CO I1

CTl '1
co "3* in in -D r— r~ x> oo cn

a a n a a

Q 3 3 3 3
3 3 3 33
in 3 in 3 Ln
H H CN CN

Q Q Q Q Q

3 3 SI 3 3
3 3 3 3 3
3 in 3 in 3
iO CO •5T "3- m

Q Q Q Q
CTi

cTi

CO

3 S) 3 3 3
S3 3 3 3 3
3 3 3 3 3
lO > CO J\ 3

Ln in in in in
CTt <J> CTi o> cj>

IvDCOHCN
r-» r~ r- co x>
CO CO CO CO CO

r~ cn in co vo
t~ 00 CD Jl Jl
in in in in in

so ro cn ^r in
m h in <» n
<J\ 3 3 3 3

•on CO 3 3 VT

m ^" 0> CTl 'S'

3 H H CN CO
ON ON ON CN ON

in co co i£> cn
in oo io m io
CD <J Ol 3 1^
mio iOcoco

3 3 3 3 3
3 3 3 3 3
3 3 3 3 3
m SI lO 3 3
rH CN ON in 3

1"

00
CO

3
3

3

T
3
0^

QJ

u
a
w
orj

QJ

6

C
H
QJ

jQ

CJ

CO

i-i

03

U

QJ

-C
4-1

CJ)

c •

H U
U3

c/1 -H
QJ H
cn co

o
a

CJ

QJ -Q
Han
E H
(0 H
cn s

QJ QJ

.C N
4-1 H

CD

C
•H GJ

•H
cn a,
4-1 E
H (0

C 01

01

4-1 QJ

o ^
•H

C 3
o tr
H QJ

O QJ

Q-.-C

O -U

Ch
OJ

n
4->

w cn

•H QJ

cn h
H CO

J^ >

>1
U
cO

u
D
u
u
to

TD

QJ

3
a1

ca 3
£ in
4J

c
cu m
u c
O 4J

E
cu

H C

C
CJ QJ

cn c
u 3
QJ

> >i

a,a
(0

4J

o
c

cn

QJ

O
•a

c
o

QJ CO

H H
s u
CO rH
en ca

u

en h
qj c
cn 4->

co

u c
•H

o
cn to
0) QJ

c cn

4J 3

c co

H —I

E

o.

G*

C
QJ

U
u
QJ

a

a,
o
a
cu

.c

C +1

QJ <&

-C in

a

22

Table 2 - Two different sampling techniques as estimators of query performance.
Precesions are at 95* confidence level.

Query

state=98
(Means a ship)

state=uk

state=06

fuel=145

fuel=jp4

fuel=jp4 ! fuel=145

coc;mand = sac

comnand=mac ! comraand=sac

fuel=jp4 & commandrmac

reciepts_dod> 100000

stock<10000

state=9B & fuel=145

state=9b & fuel=jp4

fuel=jp4 & stock<10000

stock<5000 & stock>0

stock<5000 & stock>0 &
state=98

open_inventory<stock

open_inventory>stock &
command=sac

state= (& stock<10000

state=98 4 stock<10000 &
fuel= jp4

receipts_dod>receipts_comm

conMTiandisac & commandfcniac
& fuel=jp4

location>us

location>us & state=98

receipts_dod>10

receipts_comm> 1

receipts_coriim>10 & receipts dod>10

command=pac/ships i command=pacflt

(command: pac/ships ! coranand=pacflt

)

& state=98

ctual
olume
oduced

Estimated From
100 Kandom
Tuples

Estimated From
100 Random
Locations

Estimated From
Classical
Assumptions

1752 1900+765 1755+626 109
e

190 400+332 93+176 109
e

701 700+498 994+731 109
e

1015 600+463 1 196+330 400 e

1227 1400+677 1398+355 400 e

2242 2000+780 2594+620 800e

464 300+333 186+352 86
e

607 700+498 419+560 172
e

27 0+194a 47+38 1c
1

9 0+194a
31+59 ?

8268 8300+733 7812 + 1167 ?

55 100+194 124+123 177
1

4 0+194a 16+29 21:>

633 900+564 668+261 1014 1

5130 5400+972 4923+1250 ?

55 100+194 62+92 399 1

1953 1800+749 2019+538 9

239 100+194 109+2C5 90
1

1608 1300+749 1460+493 1449 1

3 0+194a 16+29 178
1

1528 1600+715 1600+452 ?

1110 1400+677 1305+346 1153
1

267 1 2300+621 2794+890 ?

1740 2000+780 1739+627 467
1

1554 1600+715 1584+472 ?

2505 2500+844 2252+665 9

224 0+194a 248+203 389
1

663 300+333 373+236 172
e

58 3 300+333 311+225 116
1

a Actually, since p=0, this should be 0+0. We give a more conservative precision based upon
p=0.01.

eThis is based on the assumption that each distinct domain value is equally probable.

This is based upon independence between domains.

23

assumptions.

Probability of correct guess . Having gotten p , d R , p~,

and dg for the two relations in the query, one can decide which

intermediate result to ship over the net. It would be useful to

know the probability that the choice made is, in fact, optimal.

If |R| and |S| are the volumes of the relations R and S, then the

estimates of |(R|B
R)| and |(S|B

S)| are pR |R| andp
g
|S|. Assume

that pR | R | >ps I S I . The best strategy then is to ship the relation

(S!B
S). The exact values of |(R|BR)| and |(S|BS)| will usually

be different from the predicted values, but as long as

I (&IB R) lj> I (S|Bg) | , the correct decision will have been made.

The confidence in the decision is merely the probability

tnat I (RlBR) | > |
(?|B

S) | is true. If it is assumed that the two

values are normally distributed around the estimated values, then

it can be shown that the "probability of correct guess", if

relation (S|B
g

) is shipped, is

(p_|R|-p_|S|)z— R S
\

(d
R
|R|)

2
+(d

s
lS|)

2

A derivation of this is given in Appendix A. Sample values of

this function, for d R
|R|~d

g
|S|, are presented in Table 3. For

4
instance, suppose |R|=|S|=10 , pR

=0.1000, pg
*0.084, and

d =d =0.02, then d I R| =d e | S|=200 , and p D |R|-p_|S| * 1000-840 = 160.

From the table, one can deduce that by shipping the output from

S, one will have made the correct decision 86.6% of the time.

Expected excess cost . From (3) , it is possible to find the

24

20
40
60
80

100
120
140
160

180
200
220
240

« 260
^ 280

CO

CO
T3

300
320

340
360
380
400

40

0.500
0.500
0.500
0.500

0.997
0.917 I

0.822 l

0.756 I

0.500
0.500
0.500
0.500

0.710 I

0.678 I

0.654 I

0.636 l

0.500
0.500
0.500
0.500

0.621 l

0.609 I

0.599 I

0.591 I

0.500
0.500
0.500
0.500

0.584 I

0.578 l

0.573 <

0.569 I

0.500
0.500
0.500
0.500

0.565 I

0.561
0.558
0.555 I

Pr ! Rt - P51S1

80 120 160 200

1.000 1.000 1.000 1.000
0.997 1.000 1.000 1.000
0.968 0.997 1.000 1.000
0.917 0.981 0.997 1.000

0.866 0.952 0.987 0.997
0.822 0.917 0.966 0.990
0.786 0.883 0.943 0.976
0.756 0.851 0.917 0.958

0.731 0.822 0.891 0.938
0.710 0.797 0.866 0.917
0.693 0.775 0.843 O.896
0.678 0.756 0.822 0.876

0.665 0.739 0.803 0.857
0.654 0.724 0.786 0.839
0.644 0.710 0.770 0.822
0.636 0.698 0.756 0.807

0.628 0.688 0.743 0.793
0.621 0.678 0.731 0.779
0.615 0.669 0.720 0.767
0.609 0.661 0.710 0.756

Table 3 - Probability of correct guess
when relation S is shipped

to

CO
•o

OS
•o

20
40
60
80

100
120
140
160

180
200
220
240

260
280
300
320

340
360
380
400

5.76
11.51
17.27
23.03

28.79
34.54
40.30
46.06

51.82
57.57
63.33
69.09

I
4.85
0.60
86.36
92.12

97.87
103.63
109.39
115.15

40

Pr!R! - PsiS!

80 120

0.01
1.09
4.16
8.35

13.10
18.17
23.42
28.80

34.25
39.77
45.33
50.92

56.54
62.18
67.83
73.50

mi
90.55
96.25

0.00
0.02
0.55
2.18

21.34
26.20
31.21
36.33

41.55
46.84
52.19
57.59

&§?
74.01
79.54

0.00
0.00
0.04
0.40

12.48
16.40
20.61
25.04

29.65
34.41

IIM
49.35
54.50

.70

.96

160

!i

0.00
0.00
0.00
0.05

0.33

kit
4.37

6.82
9.73
13.03
16.64

20.52
24.63
28.93
33.39

u-.n
47.50
52.40

200

0.00
0.00
0.00
0.00

0.06
0.31
0.90
1.95

3.47
5.46
7.86
10.65

13.76
17.16
20.80
24.66

28.71
32.91
37.26
41.73

Table 4 - Expected excess cost, in tuples,
when relation S is shipped

25

likelihood of making the wrong decision. It is also useful to

know how much will be lost as a result of the fact that the

choice made is not always correct. The expected excess cost is

the expected number of extra tuples that will be shipped if the

wrong decision is made, multiplied by the probability that the

wrong decision will be made. When relation (S|B
g) is shipped,

this can be computed from the formula

cd cd d |R| d |S|

J / (Y-x)f (x,p
R
|R|,-^—)f (y,ps

|s|,-^--)dydx.
-co X

This is the expected value of (y-x) =
| (S I B)

I -| (R| B) I computed
o K

over all x and y such that y>x. This formula can be simplified

to

CD

a/ (1-F(x))dx

where

R
-y<d iRi)

2
+(d isn 2

and

pR
|R|-p

s
lS|

b -

Sample values of expected excess cost are presented in Table 4.

The taole entries are the expected number of extra tuples that

will be shipped, for given precisions and differences in expected

volumes. In the example for Table 3, where dR |R|*d |S|=200 and

p n l Rl -P~l S| =160, one would expect, on the average, to ship 9.73

26

tuples more than are necessary. (The smaller relation will

actually be shioped 86.6% of the time, and 13.4% of the time an

average of 9. 73/. 134-72. 61 extra tuples will be shipped.)

Join Prediction

The above random sampling technique will allow prediction

of the volume of output from a restrict on a relation.

Unfortunately, optimizing more complex queries involving several

levels of joins will require estimating the volume of output from

join operations. The following sections discuss a query

consisting of two restricted relations joined on a single domain.

In this case, it is assumed that the output from the join might

have to be shipped. It is therefore necessary to estimate the

volume of output from the join in addition to the volume of

output from each select.

For this query, there are several strategies which could be

used, depending on the relative volumes of the database

relations. There are two cases which should be considered: both

relations large and one large and one small relation. Each case

will be considered separately.

One large and one small relation . If one relation is very

much larger than the other, it will be worthwhile to use sampling

on only the larger relation. The three different volumes

involved are computed using different methods. The volumes and

the method used for predicting each are as follows:

Result of select on smaller relation: This volume should

27

be found by simply running the select on the entire small

relation. The relation is assumed to be small enough that the

cost of performing the select and/or shipping its output more

than once is minimal compared to the total query cost.

Result of restrict on larger relation: This volume should

be predicted using simple random sampling. The method used is

the same as that used for the two volumes in the first query

considered.

Result of the join: Let X be the number of tuples that

will actually be produced by the join. This volume can be

predicted by estimating the average number of tuples in the join

output which come from each tuple in the larger relation. This

can be done by joining the sample of the larger relation with the

smaller relation after performing the respective select

functions. If the sample of the larger relation contained n of

the total N tuples, and this "sample join" yielded x tuples, then

the sample tuples produced an average of x/n tuples each in the

join. Therefore, a reasonable estimate for X is X=Nx/n. If x.

is the number of tuples in the sample join which come from the

n
jth sample tuple in the larger relation (note that Jx .=x) , then

3
J

the precision of the estimate of X can be computed from Yamane's

equation for the precision of the "total of a population".

Again, sampling without replacement is assumed, where no tuple

from the larger relation can appear in the sample more than once.

His formula (from page 84) is

28

d 2 . 2 2N
2 s^ jlN^ni

n N

where

s 2 « 3
3

n-1

As before, if k is the confidence level associated with the given

z, then |X-X| will be less than d k percent of the time.

Both relations large . When attempting to model the join

between two large relations, one might be tempted to take a

simple random sample of each relation, form the join of the

samples, and use this sample join to model the actual join.

Unfortunately, because each sample will contain only a small

fraction of the possible joining domain values, this sample join

will not "mesh" the same as the actual join. Consider, for

instance, a join between two relations of 10,000 tuples each,

where the joining domain is a key for each relation consisting of

the integers from 1 to 10,000. If 1% samples of 100 tuples are

taken from each relation and then joined together, only one tuple

could be expected to be found in the sample join. This is even

without any select functions being performed. The join of the

two unrestricted relations would produce 10,000 tuples, so this

is a sample of size 1 from a population of 10,000. This will

give a poor precision, indeed. What is needed is a sampling

technique which will estimate the output from each relation and

also estimate the output of the join.

Toward this end, a variation of the sampling technique is

29

introduced here. In previous discussions the basic sampling unit

was a single tuple. Instead, take individual values of the

joining domain to be the basic sampling unit. Before, the output

volume was estimated by estimating the probability that each

tuple would be selected for output, and multiplying this

probability by the total number of tuples. Instead, the volume

can be estimated by first estimating the average number of tuples

with each domain value and multiplying by the number of distinct

domain values. If m of the M possible domain values are picked

as the sample of the domain, and n. is the number of tuples with

the jth sampled domain value which satisfy the output conditions,

then the total number of tuples in the output can be estimated as

S = 5 2n-i
-j 3

The precision of this is found from

d
2 . Z

2
M
2 sf i^jO

m n

where

2 !
(Vm>

s 1
m-1

This equation for d can be easily inverted to get the sample size

m required to produce a given precision when the sample variance

2
is s .

To implement this method for predicting join output, first

take a sample of the joining domain values. From each relation

30

select and save all tuples which have one of these values. The

query in question should be run against these samples. The above

formulas can then be used to predict the performance of the query

when run against the full relations.

There are, of course, disadvantages to this scheme. If the

multiplicity (number of tuples with a given joining domain value)

and the variance (s' in the above equations) are not small, then

the number of tuples required for a given precision will be

larger than for simple random sampling. Also, because

constructing a sample will require searching the relation instead

of just picking random tuples, the cost of constructing the

sample will be much higher. (The presence of an appropriate

index would reduce this extra cost factor.)

Another problem inherent in the scheme has to do with the

fact that the sample is no longer truly random. In particular,

if a select function references the joining domain explicitly,

the prediction could be off. There are two ways of coping with

this problem. It could be ignored (with some justification) in

the hope that the sample will be large enough to smooth out this

effect. Alternatively, the query processor could be made smart

enough to separate the select into parts that do not depend on

the joining domain. These parts could be run against the sample

separately and the results combined using an independence

assumption. For instance, suppose the join is on domain

"location" and the query is "(location * 'London 1
& stock > 1000)

or (location * 'Paris' & stock > 5)." If the sample shows that

the "average" location has five tuples with stock > 1000 and ten

31

with stock > 5, then one can expect 15 tuples to result from this

query. It will sometimes happen that the domain value (s) tested

in the query will be included in the sample. In this case it is

not necessary to look at the full relation at all. If, in the

above example, both "London" and "Paris" were in the sample, the

query could be processed using only the sample. (In light of

this, it is tempting to place the most frequently referenced

domain values in the sample. This would have to be done with

extreme care, however, to preserve the statistical properties of

the sample.)

Experimenta l results . A second sampling method was used on

the same test database as before. This was a sample by domain

value. One hundred of the 1553 values of the field called

"location" were selected, and the 663 records wnich had one of

those values were collected. The predicted volumes in column 3

of Table 2 are 155.3 times the volumes from the queries run on

this sample. The precisions are obtained from equation (4)

.

General ized Query Sampling

All of the above discussions have dealt with a very simple

query operating on only two relations. This section describes a

sampling technique which is applicable to more complex queries

consisting of joins and restricts on an arbitrary set of

relations. By constructing specially designed samples of the

individual relations, this technique will allow estimation of the

volume of output from each intermediate result in the query.

32

Unlor tunately , it is difficult in this general case to

define the probability of correct guess and expected excess cost

described in earlier sections. These statistics were defined for

a simpler, two-relation query for which there were only two

possible query strategies. It was easy to treat the tradeoffs

between the two strategies. In the current, more general case,

there could be a very large number of feasible query strategies

for any given query. The probability of correct guess in this

case would be the probability that the chosen strategy is better

than all alternatives. To compute this would require some kind

of enumeration of the possible strategies and a computation of

tne effect of the errors in the estimated volumes on the cost of

each strategy. Fur therraore 9 in the two-relation case each

relation was sampled independently, so it was reasonable to

assume that errors in the volumes being estimated were

independent* This made it easy to treat tne problem

analytically. In the general case, the relation samples are not

built independently, so it is unreasonable to assume independence

of the errors. For these reasons, no attempt has been made to

define probability of correct guess or expected excess cost in

this context.

A Multiple-Relation Sampling Technique . Consider now an

arbitrary relational-algebra query to the database. This query

can be represented as a tree. Each leaf node represents a select

function to be applied to some stored relation. Each interior

node represents a join between two relations and a select on the

result of the join. This tree can be locally optimized using a

33

procedure, similar to that described by Smith and Chang [75]

,

which "moves down" portions of the select functions as far as

possible in the tree. This will cause tuples to be removed as

early as possible, at low levels in the tree, thus reducing the

total volume of intermediate results. To optimize the assignment

: tree nodes (query operations) to network hosts, it is

necessary to be able to estimate the volume of output from each

operation in the query tree.

The approach developed here is an extension of one

described in an earlier section. For predicting the output of a

join between two large relations, the suggested approach was to

select a sample of the domain values and estimate the number of

tuples in the relation which have each value. To predict

arbitrary queries, we will select one database domain as a "base H

domain B from which sample values will be taken. Samples of

individual relations will be constructed which consist of all

tuples which either contain one of the sampled B values or which

could be joined, through some series of join operations, with a

tuple containing one of the sampled B values. The assumption of

join uniqueness ensures that the relation samples will be unique

for any given base domain sample.

The procedure described below selects tuples to be included

in the sample by first identifying samples of some domains which

could be involved in query joins. Every database relation will

contain at least one domain which has been sampled. The samples

of the individual relations will consist of all tuples which

contain one of the sampled domain values. For each sampled

34

domain D in the database, the sets S
Di and the constant z D will

be developed. S
Di is the set of all values of domain D which are

"associated with" the sampled value b^^ of the base domain B. The

values b^ of B and d^ of D are defined to be associated with each

other if there exists a tuple in GOAL which contains those two

values. The constant z
D is the number of joining steps needed to

get from the relation containing B to the relation containing D.

1. First, the base domain B must be selected. This could be

any domain in the database, but for best results the

joining domain with the largest number of distinct values

or a key domain of GOAL should probably be selected. From

the M distinct values of B, select a random sample of m

values. For each sampled value b., the set S u - contains

only the value b^ . The "distance 11
z B is equal to zero.

2. Let T be any relation in the database which contains no

domains for which samples have been constructed, but which

can be joined to relation R by domain D, where R contains a

domain C which has been sampled. If no such T exists, the

sampling procedure is finished.

3. Use the notation (c.,d„)GR to indicate that a tuple with a

domain C value of c. and a domain D value of d. exists in
J *

R. The sets S ^ can be constructed as

S
Di

=
* d k ! c

j
€SCi' (c

j
.d

k
)6R}.

S
Di is the set of alJ D values which appear in R together

with one of the C values in S
ci# The values in SD ^ are

35

therefore all of those associated with values in S^..

The domain C is either B itself or it is one of a set

of domains which can be used to join R (possibly thru a

series of intermediate linking relations) to a relation

containing B. The nature of the join operation ensures

that if any R tuple with C value c. can be joined to a

tuple with B value b. (again, possibly using intermediate

joins), then every R tuple with value c. will be joinea to

a tuple with value b.. Since the join operation mu st

reconstruct pieces of GOAL, and since S„ . contains all

tuples associated with b^ it follows that SDi contains all

D values associated with b. . Conversely, a value d,, cannot

appear in S . unless it is associated with b., so SD
- is

exactly the set of D values associated with b..

Having identified the sample of D, the sample of T

can be constructed consisting of all those T tuples which

have D values appearing in one of the sets S . . If there

are any other relations in the database containing domain D

and which have not yet been sampled, their samples can also

be constructed from the Sn -.

4. Let z
D
=z

c
+l.

Go to step 2.

The sample of the database consists of the individual

relation samples developed above.

Each individual value of a sampled domain may be associated

36

with several values of B. The probability that a given domain

value will be included in the sample is directly proportional to

the number of B values it is associated with. Different domain

values will therefore have different probabilities of being

included in the sample. If this effect is not compensated for,

the estimates will be biased in favor of tuples with values which

are associated with a large number of B values. Therefore, the

relation samples must be used with appropriately developed

weights which will cause "high probability" tuples to have

proportionally lower impact on the estimates.

For each value d. which appears in one of the sets sni' a

weight mD
- must be defined. This weight is equal to the number

of distinct B domain values which d. is associated with. The

computation of these weights is by far the most expensive portion

of the setup cost of this sampling method. The only way to find

them in the general case is to enumerate the base domain values

which could be joined to each sampled value in the sampled domain

D. This could be done by finding the set S '
.

, the set of B

values associated with sampled value d , in a manner similar to

that used to find S .. Alternatively, a sample of GOAL could be

constructed containing all tuples with a sampled domain D value,

using appropriate joins of individual relations. The m . values

could be computed directly from this relation.

There is a special case where computation of m . becomes

somewhat easier. This is when the base domain B is a key of

•oAL. one such key can always be constructed, if necessary, by

37

combining several domains. In this case, for the relation R and

domains G and D (from step 2 above)

,

m
Dk = * m

Cj'
3

(c^d^) mR

In other words, the weight on the domain value d. is equal to the

sum of the weights on the domain C values which are associated

with d^. The weights on all values of the base domain are 1. The

weights for th* other domains can be computed as part of the

procedure defined above. At each step, the weights for all

values of a domain D (not just the values in the sample) can be

computed from the weignts on C.

To estimate |T|, the volume of a relation T which is the

output of some query or piece of a query, run the query on the

database sample. Call T" the result of running the query on the

relation samples, and let D be a sampled domain in T such that

Z
D- ZA ^ or a ** sampled domains A in T. If x^ is the number of

tuples in T' with a domain D value of d., M is the number of

distinct base domain values and m is the number of them that are

in the sample, then |T| can be estimated as

If B is a composite domain, the sampling procedure
must treat B as distinct from its components. For instance,
if B is the composite of domains A and C (call it AC) , then
the procedure could generate samples of A or C or both in
addition to the sample of AC. If, in addition, no stored
relation exists which contains all of the domains of B, it
will be necessary to construct a temporary relation
containing only B for sampling purposes. It can be
discarded when the sampling parameters have been computed.

38

mr 1
1

where

x .

n, = 5 -2_.

J
n
Dj

d
D
inS

Di

The quantity n. is a weighted count of the number of tuples in T'

with D values associated with B value b.

.

As mentioned above, probability of correct guess and

expected excess cost will not be computed for this type of query.

However, the accuracy of any intermediate volume estimate can be

obtained as before from the formula

,2 z
2
M(M-m) 2

o = £- i-S
m

where

^ (n
i

" M }

r.2 i
s =

(m-1)

Example . Consider a database consisting of four relations.

It contains information on parts and suppliers who supply those

parts. Relation PARTS contains information for each part,

relation SPLR contains information for each supplier, relation

CITIES contains information on individual cities in which

suppliers are located, and relation SP indicates which suppliers

supply which parts.

39

PARTS SP SPLR CITIES
PNAME
Widget
Bolt
Nut
Rivet

P#
1

2

3

4

P#
"1

s*

2 1

2 3

1 4

3 2

3 4

4 4

4 2

s#
"I
2

3

4

SNAME
Ajax
Acme
Widget
Bomad

Ci ty_

Urbana
Hinkley
Urbana
Flag staff

City State
Flagstaff NM
Hinkley Oil

Urbana IL v

Suppose that the composite domain (P#,S#) is selected as

the base domain. (This is a key of GOAL.) Call this composite

domain C, and let the sample of C be the values (1,1), (2,3), and

(1,4). The domain samples generated from this sample of (S#,P#)

are

S
C1 ={<1,1)} Sp##1 ={l} Ss#rl ={l} Scity#1«{Urbana}

S
C2 ={(2,3)} S

p#f2={2} Ss#f2={3} Scityr2={Urbana}

S
C3-{(l f 4)} S

p#r3 ={l}
Ss#r3 ={4) SCltVf3 ={Flagstaft}

The weights resulting from this choice of base domain are

P# mP# S# mS#
2

2

2

2

1

2

3

4

2

2

1

3

City

Urbana
Hinkley
Flagstaff

raCity
3"

2

3

To test the effect of a given query which uses only the

SPLR relation, for instance, run the query on the sample relation

SPLR' which contains only tuples with S# values of 1, 3, or 4.

If that query selected only the tuple (4, Bomad, Flagstaff), then

an estimate of the actual output from the whole SPLR relation

would be:

40

15 =
3 (2

+ T + 3>
= - 89

The precision of this at the 95% confidence level is

.2 (1. 96)
2
(8) (5) ((0-0. II)

2
+ (0-0. II)

2
+ (0.33-0. II)

2
)

(3) (2)

= 1.86

= > d 1.36

Prediction of Project Output

In the discussion up to this point, the project operation

has been deliberately ignored. This is because not all sampling

methods can be used to predict the effect of a project. The

project operation will coalesce several input tuples into one

output tuple, so if the sampling method used was such that some

tuples in the sample could possibly be merged with tuples not in

the sample, it would be impossible to accurately predict the

output volume. There would be no way to estimate from the sample

alone how many input tuples would be projected into a single

output tuple.

It turns out, however, that the multiple-relation sampling

technique just described will handle project in the majority of

cases. As long as a given project retains at least one of the

sampled domains, it will be possible to predict the output of the

project using that sampled domain. As before, the query,

including the project, is run on the sample database, and tnen

the output volume is predicted using the sampled domain. This

tfill work because the sample database, by definition, contains

41

all tuples which have any one of the sampled domain values,

hence, there can be no tuples not in the sample which could be

merged with a tuple not in the sample. Since all joining domains

are sampled, there will always be a sampled domain in the output

of any project which will later be the input to a join.

Therefore, all volumes (except sometimes the final output volume)

in a query with projects can be predicted. In the cases where

the final output volume cannot be predicted using sampling, any

gross estimate of the volume can be used to find a sub-optimal

strategy.

Pathological Cases

It is quite possible that any given database will exhioit

pathological behavior which will make it impractical to implement

sampling for the entire database. The samples required for some

of the relations might prove to be substantial portions of the

relations themselves. In this case, the cost of sampling for

those relations will be an unacceptably large proportion of the

total query cost for that relation. There are at least two

situations in which this can occur.

Wide variation in relation sizes . If there is a very wide

range in the sizes of the relations of the database, it is

probable that the smaller relations will have samples which are

appreciable proportions of the whole relations. To see how this

happens, consider a three-relation database which is an upgraded

version of the two-relation one discussed earlier in this

chapter

.

42

Relation Domains Number of Tuples

SUPPLIERS Naroe,Splr# 1000
PARTS Color, Shape, Parti 100,000
S-P Splr#,Part# 300,000

The SUPPLIERS relation has one tuple to describe each supplier,

the PARTS relation has one tuple identifying each part, and S-P

is a "linking" relation which indicates which suppliers supply

each part. On the average, each supplier supplies 300 different

parts, and each part is supplied by 3 suppliers. Suppose that

Part# is selected as the "base" domain, and 1000 of its 100,000

values are sampled. There will then be 1000 tuples in the sample

of PARTS, or 1% of the whole relation. Because each part number

(value of Part#) appears about 3 times in S-P, it is reasonable

to expect about J000 tuples in the sample of S-P, which is still

only 1% of the tuples in that relation. However, because each

Part# value is associated with a large number of Splr# values, it

should happen that a large percentage of the SUPPLIERS tuples

(over 95% based upon strictly probabilistic considerations) will

be in the sample. This means that the sampling cost for the part

of the query which uses SUPPLIERS will be close to the actual

processing cost for that part of the query. In this case,

sampling should not be used on the SUPPLIERS relation. It is so

small, anyway, that it contributes only a small part of the total

query cost. Instead, the part of the query which uses this

relation should be run on any copy of SUPPLIERS wnich is

available on the network. The rest of the query can then be

optimized using exact results for the output from this part of

the query, rather than estimates based upon sampling.

43

Large "tan-out" between domains . The term "fan-out" is

used very loosely here to refer to the average number of domain

values in one domain associated with each value of some other

domain. Even it the relations are of similar size, a large fan-

out can cause large samples. In the last example, the Spirt

domain has a large fan-out to domain Part#. Suppose Spirt is

picked as the base relation with a 10% sample of 100 of its

values. The sample of SUPPLIERS would contain 100 tuples.

Because each Spirt value occurs about 300 times in S-P, the

sample of S-P will have about 30,000 tuples. About 27,100 tuples

could be expected in the sample of PARTS, or over 27% of that

relations's tuples. (There will be some duplication of the Partt

values selected by the sample of Spirt , which is why the total

sample of PARTS contains fewer than 30,000 tuples.) A 10% sample

of SUPPLIERS therefore results in a 27% sample of the larger

PARTS relation. In a large database with many relations, this

"fan-out" problem could result in unreasonably large samples. In

such cases, a more judicious choice of base relation might help,

or it might be necessary to eschew sampling for those relations

with unreasonably large samples. This means that the •'samples"

for those relations would consist of the relations, themselves.

44

V. AN INTEGER LINEAR PROGRAM FOR
OPTIMAL QUERY STRATEGIES

Chapter IV described a method which can be used to estimate

the amount of data produced by each operation in the query. In

this chapter, a method for generating a query strategy based upon

those estimates is discussed. This is an integer linear

programming (ILP) model which will produce an optimal assignment

of query operations to network hosts. Solving a general ILP is

an expensive proposition, so a procedure is developed which will

allow much less expensive linear programming (LP) techniques to

be used, instead.

This technique is not guaranteed to find the best strategy

for the given query. Finding such a global optimum would require

considering many possible permutations of the query tree. In

particular, the fact that the join operation is associative

(within certain limits) would have to be considered. Altering

the order in which joins are performed can have a large effect on

the total size of the various intermediate operations. However,

this procedure will find the optimal strategy based upon the

given query tree and estimates of intermediate volumes.

Def ini Li on of the Integer Linear Program

The cost of a particular implementation of a relational

algebra query in a distributed environment can be expressed with

the cost function

C 55(E x + V t .)

qi
qi qi q qi'

45

where

E is the expense of performing operation q on host i,

V is the expense of sending the output of operation q over

the network (An ARPANET-like cost structure is assumed

where cost is determined wholly by volume of traffic.) ,

x . is 1 if operation q is performed on host i, and is zero
qi ^ r

otherwise, and

t is 1 if operation q is performed on host i and its output

must be shipped over the network, and is zero otherwise.

The constants E . represent purely local processing costs, and

are included in the cost function here only for completeness. No

suggestions are made of how to compute them. The constants V

are the estimated volumes of output from the operations,

multiplied by an appropriate cost factor. (The constants E .

v»

will also depend partly on the estimated volumes for the inputs

to operation q.) All cost constants are assumed to be positive.

Let there be N operations and M hosts, and denote the

successor (or parent) operation of operation q as a . (This

means that the output of operation q is input to operation a) A

minimum-cost strategy for servicing the query can be found by

solving the integer linear programming problem (ILP)

Find values for x . and t • which minimizeqi qi

46

N-l

f
y t qi qi - q qi'

1 q q-i

under the constraints

2xai = 1 q-1,... ,N (5)
i

M

x . - x -. - t . < B q=l,...,N-l (6)ql V ql
i-1 M

x . ,t .
= or 1 (7)qi qi l

'

The constraints (5) ensure that each operation is performed on

exactly one host. The constraints (6) ensure that t • is one if
qi

operation q is performed on host i and a is performed somewhere

else. If both q and a are performed on host i, or if q is not

performed on host i, then the fact that V is positive (by

assumption) will ensure that the minimization procedure will

2produce a t . of zero.

It is assumed here that the output of operation N, the last

operation in the query, will never be shipped over the network.

Tnerefore, the variables t„. and the constant V kl are left unused
Ml N

in this formulation. If it became necessary to allow the output

of N to be shipped, it would be easy to add a final, dummy

2
It would be possible in this ILP formulation to

replace the M t . variables with a single variable t .

However, this siS^lif ication would render the linear
programming formulation given below unworkable.

47

operation N+l, where a =N+1.

Notation

In standard terminology, any assignment of values to all of

the variables x . and t is called a solution to the ILP. A
qi qi

solution which satisfies all of the constraints is called a

feasible solution . A feasible solution which minimizes the cost

function (i.e. has a cost which is less than or equal to the cost

of any other feasible solution) is called an optimal solution . In

this thesis, a solution is feasible w ith respect to operation Q

if all constraints of type (6) are satisfied when q is a

descendant of Q, and all constraints (5) are satisfied when q is

either equal to Q or is a descendant of Q.

In the discussion which follows, a solution to the above

ILP will be represented as as a vector of length 2(N-1)M. The

vector corresponding to a given solution S with variables equal

to x^ and t*
t
will be

(X
11 ' x l2 ' • • - ' x 21' X22" ,,X, NM' t

il'
ti2" ,# ' t (N-l)M)

Similarly, the cost constants can be put in a vector of the form

'21'12'*** ' 21 ' 22 '
* * * NM' 1 ' 1 '

*
* "

' N—l

where each volume constant V occurs M times. This vector will

be called E, so the cost of a particular solution S is S£ T . A

solution which hub the variable x . (t .) equal to one and all

others equal to zero will be represented by the vector x . (€ a;;) .

The value of the variable x . (tai) in a solution

48

represented by the vector S will be denoted by S[x .] (S[t •]).

The symbol 6^ is the Kronecker Delta, which is equal to 1 if i=j

and zero if i^ j

.

Solving the ILP as a Linear Program

The above ILP can be treated as a Linear Program (LP) and

solved using classical methods (e.g. the simplex method) by

changing the constraints (7) to

X
qi' fcqi > < 7 '>

However, there is no guarantee that an all-integer solution will

result. It will be shown here, however, that if there are any

feasible solutions, there will always be at least one all-integer

solution which is optimal. Given an optimal solution S (and the

existence of a feasible solution and the fact that the costs are

positive guarantee the existence of at least one optimal

solution) the following section will describe how to construct a

set of integer, feasible solutions p- and associated positive

weights w. such that

5w. = 1

i

and

Because S is an optimal solution, it is true that p.ET>SE
T for

each p i# it is also true that |w
i
P
i
E *SE . It follows that

T T
1

p.E =SE for each p., so p. is an all-integer, optimal solution.

49

Having proved the existence of an integer, optimal

solution, a fast algorithm which will produce an integer, optimal

solution from an arbitrary, non-integer, optimal solution will be

given. A proof of its validity will also be given.

Construction of the Partial Solution s and freights . Given

an arbitrary optimal solution S, the following paragraphs show

inauctively how to construct a set P for each node q in the
q

operation tree. Each element in the set P is a pair in the form
q

(w;p) consisting of a weight w and a solution vector p. The

weights and vectors in a given P will have the following

properties:

A: 5 w = 1

(w;p)GP
q

i.e. the weignts sum to unity.

B: If I wp = T ,

(w;p)€P
q

q

then T lx .]=S[x .] for all hosts i, where u is either q or
q ui ui

one of its descendants.

C: T [t .J=S[t .] for all hosts i where u is a descendant , ofqui u l

D: Each solution p in P is feasible with respect to operation

The set P , where N is the root node of the query, contains the

weights and all-integer, optimal solutions which can be used to

reconstruct S as above.

50

First, construct the sets p for each q that is a leaf of

the query tree. Each P will be
si

P
q - ^

(SlX^ 1?^i)

sixqi]>0

The equations (5) in the LP ensure that the weights in P sum to

1, so p satisfies property A. The other properties are true

trivially.

The next task is to show that if p and P c exist with these

properties, where r and s are the children of node q, then P can

be constructed with the same properties. This will be the basis

for an inductive proof that such a set can be constructed for the

root note N.

Select a node q with children r and s (meaning that

<y
r
=<Js=q) such that P

r
and Ps have been constructed and Pg has

not. Consider the child r. Construct and solve the

transportation problem

Minimize 55(1-6.)q

under the constraints

29-ji
- S[xqi] i-1,... ,N

^It is assumed here that all operations are binary.
The extension of this procedure to non-binary operations is
straightforward. Each new operand would introduce another
transportation problem and two more ranges to "union" over.

51

?*1i
= slx

ri
J j-lf-.- »n

i

9ji>

The variable g.. is, in a sense, the part of the output from

operation r wnich is generated at host j and used at host i. Tne

quantity minimized can be thought of as the total amount of

output from operation r that is shipped over the network. A

similar transportation problem will yield h, . tor the other child
l\ X

s.

The set P
g

i s then defined as

P
q

= U U V u u
i j <w :p)6P k (w ;p) GP

S[x]>0 g..>0 „ *
1NM h, .>0 n

*
, Nflqi J ^31 P

r
U]>0 ki P

s
tx

S k
)>0

w w g . . h .

ai t?7 J1
i 4t r? P +P +x . + (l-6..)£ +(1-6..)£ .

3[x .]S[x
r
.]S[x

gk] *r *s qi 13' rj ik' sk

Proof That the Solutions Satisfy Properties A, B, C, and D.

Let p be one of the vectors generated by this procedure from a

given p and p . The vectors p ana p are orthogonal, meaning

p [x.]p [x..] = p [t..Jp [t ..] = for all i and j. This is

because the subtrees defined by r and s are disjoint. In fact,

all of the five vectors summed to form p are mutually

orthogonal. This guarantees that all of the components of p are

either or 1. To demonstrate that p is feasible with respect
q

to q, note that p and p are feasible with respect to r and s,

52

respectively. Also note that any ILP constraint satisfied by

either p
p

or p g will be satisfied by P r +P s r so P r +Ps is feasible

with respect to r and s. It must be shown that jx =1 for u
i

ul

equal to q or a descendant of q, and x -x_ . -t <0 for u aui (J i u i—

descendant of q. The induction hypothesis ensures that jx =1
i

U1

tor u a descendant of q, and x
ui-x .-t

t
<0 for u a descendant of

u
r or s. The inclusion of the term x . in the definition of P

ensures that 5xqi=l. The terms (1-6^)6^ and d-^i k)€sk ensure

that x
u i-xq ^-t u ^£0

for u equal to either r or s. Therefore, pq

is feasible with respect to q. This is true for all vectors in

P , so P has property D.

The fact that p has property A will be shown as a

subresult wnile demonstrating properties B and C. Properties B

and C must be demonstrated in several steps. Let

T = 2 wp.
q (w;p)6P

q

First, it will be shown that T ^x.J *S fac.J for any host i. The

value of T [x .] can be found by summing the weights on all

solution vectors p which have p[x .]!. This sum is equal to

w w g . . h .

2 2 2 2 c-n;

—

isfx isfx—P (8)

D (w r ?p r)6P, k (we ;p c)€P s
blXqi JblX rj

JblX sk J

S[x]>0 „ \
C

1 / S[x J>0 „ ® S
, ,

r} P
r
lx

r j

1=sl sk ps l slJ

The fact that P and P satisfy property B ensure that

53

w = S [x J
(w ;p)GP

C Cj

r *r r

P lx .]=l
r n

anu

5 w = S[x J

< w
s

; Ps ,6Ps
S

p s
(x
sk

1=1

Tne fact that g.. and h, are solutions to their respective
^ji ki r

transportation problems ensure that

2 »ji- 2 V-siV
S[x

rj
]>0 S[x

sk]>0

Rearranging expression (8) and using these identities yields

g w h. .

j
S(X

rj j
(v. ;p r

)eP
r

SlXqi J k
S(X

sk J (w_ ,p) €P^
S

S[XrjJ> Pr
[xn]»l

SlXs^> Ps
[x

s
"].l

= Six .] .

qi

Therefore T [x .]=Slx J for all hosts i. Because every p in P
vj ^j J. vj x M Si

has p [x -
] =1 for exactly one i, it follows that the sum of allc

q qi *

weights in P is
q

1 w = I I w = IT [x] * 2S[x J
* 1

(w;p)€P
q

i (w;p)€P
q

i
4 4X

i
4±

P[xqi
]=l

rnerefore, P has property A.

54

To show that T [t .]=S[t .J, it is necessary to first prove

a lemma.

Lemma 1: If the vector g is the solution to the transportation

problem between nodes r and q which was solved while

constructing P , then S [t
.

J -£(1-6 .
.)g .. for any j.

Proof: Suppose 0<S[x .)<S[x .] and g . . >0 for some i and j such

that i^ j . Construct g', a new solution to the

transportation problem, in the following way:

g '. . - g . . + g •

*J3 *33 ^Di

gj 4
-

g
ji!u.g kj

= 9 kj * S[x']-g,. k=1 J-lrJ+lf.-.t"

Hi - Hi * S[x
ji

)-i..
k=1 3-l.J+l M

tJ J J

g!. » g . for all other case;

It is obvious that q'. . , g'» and g' are non-negative.

From the fact that g . . +g . . <S[x
rr

.] it follows that g* is

non-negative, so all variables in g* are non-negative.

From the fact that the solution g is feasible and the fact

that

^3 " »« - gji - 9
S1

Z S(x^-
gjj

- *ji ' "ji -

Mj

> 29^ - Zg ki

55

and (by similar reasoning)

it follows that 9' is feasible. The cost of g' will be

lower that that of g by

q . + -__

—

±—-

—

a.—
^ji S x ^T-g . .

Hence, the original solution was not optimal. Therefore,

in any optimal solution, if S [x
.

J <s [x •] , then g • • =

^ x
r ,J ana g ^

= ^ tor i^j . A similar argument will show

that it S[x .]>S[x .], then g.. = s l x
q
jJ and

^ij
=0 tor ^3 •

From the above argument, it follows that when

S[x J<Slx], then g.. = S[x .] = 5g This means that
£ j

J - q]
J ' y

3] rj J ^31
5(1-6^)9^0. Similarly, if S [x

r ^
] >S [x .] , then g... =

Six J, so 5(1-6.
.

)a .
.

= ?g - g =S[x]-S[x]. Since
1

qj I 11 Ji f]l y
DD H q}

J

Sft .]>0 cv constraint (7')/ and since S(t .]>S[x]-S[x J

by constraint (6), it follows that Sit .] >5 (1-6 . .

) g . . . The
r j —t 13 31

assumption that V is positive ensures that S[t .] will

never be larger than is required by the constraints (6)

.

Therefore, S(t
r
-]=^(l-6

i
.)g.

i
.

Q.E.D.

As oefore, T [t] is equal to the sum of the weights on
q r j

all p 's which have p ft
.

J =1 . This sum is*q 4 cj

56

w w g . .h.

5 5 5 5
r s 3i ki

I (w ;p)6P k (w ;p) €P
S [x

qi J S lx
rj

]

S

[X
sk]

r r C Cfy ISA s'*V s ^ J

qi J

I
S[X

rj 1 (w
r ;5 r

)€P
r

S[X
qi J k

S(X
sk J (w ..pJGp"

3

Six .]>0 ,

r
, ,

r S[x J>0 T , ,
s

qi p
r
Ix

rj
1=1 sk p

r
Ix

rk
]ssl

Using Lemma 1 and the same identities used to simplify expression

(8) , this reduces to

5 (1-6.)g •

.

S[x
q
.]>0

Since S[x .]»0 implies g .
. -0 (from the definition of the

transportation problem) , this is equal to

5(1-6. .)g . . = S[t J

.

7
1 lj'^ji r] J

Therefore, for all t . (and t . by similar argument),

T
q
[t

r
.]-S[t

rj
] and T

q
(t
sk

)=S[t
sk).

Now, it remains to be shown that T [y]*S[y] for all

variables y such that p [yl«l for some (w ;p)€P . (If p [y]-l,

there can be no p_ in p such that p_[y]*l.) T (yj is obtained by
s s s q

summing the weights which correspond to solutions p in P which

have p(yl*l. This yields

5 w
(w,p)6P

g
Ply]=i

57

w w g . . h.

= 55 5 5 5
r s 3 1 k *

i J (w
r ;5 r

)€P k (w ;5)€P Slxqi
]Slx

rj
)Slx

sk J

S[x .J>0 S[x .]>0 „ , , i S[x J>0 ^ 7 , i1 qi J

ru Pr^rjl" 1 sk P s
lx
sk J=1

P
r
[y]-i

w g

.

h,

j (w
r JP r

)6P
r

SIx
rj 1 I

SIX
qi]

k
S[X

sk] (w :pJGp/ 3

SlX
rD

1>0
P
r
lxn

r

,,i
r

S < xqi'>
S ^s k

J>
Ps

tx
s
;i«l

S

P
r
lyJ-i

j (w ;p)€P
S l x rj^

>0
p x]=1

P
r
lyJ=i

Since each p in P will have p [x .1=1 for exactly one j, thec
r r ^r l r] J

sum over j and the restriction p (x]=1 can be eliminated. The

sum can then be reduced to

5 w

p r
)e;

pr [y]-i

(w
r ;P r

)€P
r

This is exactly equal to T [y] , which by hyphothesis is equal to

S[y], so T
q [y]=Sly]. A similar argument will show that

TqlyHSly] for any y such that Ps [yJ=l for some ps in Pg .

Therefore, P has properties B and C.

It has thus been shown that the set P has the properties A

thru D as do the sets P^ and P
s . Since it is possible to

construct such sets for the leaves of the query tree, it is

possible to construct one for the root node, N, by induction.

This set, P^
t will contain a group of integer, feasible

58

solutions. The non-integer solution S lies on the interior of

the hyper-polyhedron defined by these vectors (i.e. is a convex

combination of these vectors) , so (by the argument on page 48)

each of the integer solutions in P
N is an optimal solution.

An Algorithm for Finding Integer Solutions

The above argument proves the existence of an optimal,

integer solution to the LP, but is entirely impractical as a

method for finding such a solution. The following algorithm will

quickly find an optimal, integer solution W, given an optimal,

non-integer solution S.

1. Set the vector W to all zeroes.

Select an l such that S[x M .l>0.

Set W[x
Ni]=l.

2. Pick any operation r which has not been visited, but whose

parent q has already been visited. (This is an arbitrary,

top-down traversal of the tree.) If none such exists,

stop. W is an optimal, integer solution.

3. Find the i such that W.[x .]«1. If S[x .]>S[x .], let j*i.
\^ J. Li. 4 *

Otherwise, let j be any value such that 0<S [x .] <S [x .]

.

Set W[x
rj

]=l, and W[t
rj]

= (1-6^).

Go to step 2.

To show that this algorithm works it is sufficient to show

that the solution it produces could be one of the solutions

produced when constructing the set P it is not necessarily one

of those produced by a given execution of the construction

59

procedure because the solutions to the transportation prooiems

are not necessarily unique.

Assume that, for some subtree with r at its root, v*

corresponds to some p
f

in P
r

. This means that ft lxui] =P r l x u iJ for

all i where u is either r or its descendant, and W[t il
SBP r lt ui J

tor all i where u is a descendant of r. Assume also that the

same is true tor P and the subtree with s at its root, and that

r and s are children of q.

If \n[x •] =Vn« [x -J=l, the conditions which were imposed on i

ana j in step 2 of the algorithm are sufficient to ensure that

there exists a solution to the transportation problem between

nodes r and q which has 9 lt >0.
Similarly, if W[x sk]=l, it is

possible to have n
ki >0. From this and the derivation of P , it

is clear that P could contain a solution of the form

p
r

+
?s + Xqi + <l-*ij» Erj

+ « 1"6iK> £.k

This solution corresponds to to for the subtree with q at the

root.

It q is a leaf and Wl.x]=l, then there must be a p in P

such that p=x .. it can therefore be shown by inauction that w

corresponds to some p in P for the subtree with root N. Tnis

means that W is the same as p, and since p is optimal, W is

optimal

.

60

VI. CONCLUSIONS

The described method for sampling a database to allow

prediction of query performance can be fairly expensive, and will

not be practical for small databases where the potential savings

from optimization are small. For large databases, however, it

will allow optimization based upon figures which are

theoretically more valid than figures derived using an

independence assumption. An important advantage of sampling is

that quantitative estimates for the error in the estimates can be

obtained.

A major part of the cost of sampling is the setup cost. A

large amount of work must be done to build the samples and

compute the weights which are used in interpreting the samples.

Technically, these samples should be reconstructed whenever an

update is made to the database. However, it is reasonable to

expect that the statistical properties of the database should not

change rapidly with time. Therefore, a sample, once constructed,

can continue to be used even if the database has been updated

until such time that it is observed to no longer reflect the

status of the entire database.

61

REFERENCES

Bernstein, P. A. "Synthesizing third normal form relations from
functional dependencies," ACM Transactions on Database
Systems, 1, 4 (December 1976), 277-298.

Chu, W.W. "Optimal file allocation in a multiple computer
system," IEEE Transactions on Computers, October 1969,
885-889.

Codd , E.F. "A relational model of data tor large shared data
banks," Comm. ACM, 13, 6 (June 1970), 377-387.

Codd, E.F. "Further normalization of the database relational
model," in Data Base Systems , Courant Inst. Computer
Science Symp. 6, R Rustin, Ed., Prentice-Hall, Englewood
Cliffs, 1972, 33-64.

hammer, M. and Chan, A. "Index selection in a self adaptive data
base management system," Proc. ACM-SIGMOD Conf. on
Management of data, 1976.

Levin, K.D. "Organizing distributed databases in computer
networks," Tech Report No. 74-09-01 Dept of Decision
Sciences, The Wharton School, University of Pennsylvania,
(Ph.D. dissertation)

.

Smith, J. and Chang, P. "Optimizing the performance of a
relational algebra data base system," ACM-SIGMOD Workshop,
San Fransisco, CA (May 14, 1975).

vallarino, 0. "On the use of bit maps for multiple key
retrieval," Proc. ACM-SIGMOD Conf. on Data, Salt Lake
City, March 1976.

wong, E. and Youssefi, K. "Decomposition - A strategy for query
processing," ACM Trans. on Database Systems, 1, 3

(September 1976), 223-241.

Wong, E. "Retrieving dispersed data from SDD-1: A System for
Distributed Databases," Proc of the Second Berkeley
Workshop on Distributed Data Management and Computer
Networks, May 1977, 217-235.

Yamane , T. Elementary Sampling Theory , Prentice-Hall, Englewood
Cliffs, 1967.

62

APPENDIX A

Derivation of Formula For Probability of Correct Guess

Given that sampling has been used on the relations R and S

to obtain pR
, d

R , pg
, and d

g
, let

d |R|

»R
=

?R
,R| S

R
= -V-

d | SI

*s
= ps

,si s
s

= —r~

Tne actual volumes of |(R|B)| and |(S|BC)| can then be thought

2
of as normal distributions with means ju D and u c and variances s

and Sg. We say that |(R|B
R)| is N(*i

R
,s

R) and |(S|B
S
)| is

2
N(u~,s). (N(x,y) denotes a normal distribution with mean x and

variance y.) Because the two samples were taken independently,

it follows that D =
I (S|Bg) I -I (R|B

R) | is N(/j
g
-u

R , Sg+s
R) , so

D-{» -»)

D' = a *
is N(0,1)

V
2 2

S
R
+S

S

The probability of correct guess when (S|B) is shipped is the

probability that |(R|B)| is greater than |(S|B)|. This is

equal to

P(| (RlB
R) | > | (S|BS) |)

= P(D<0)

< -Si
•2-2

63

(pR
|R|-p

s
lS|)z

(d
s
|S|)

2
+(d

R
|R|)

2

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Whan Data Bntmrmd)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

! REPORT NUMBER
CAC Document Number 234

2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Optimization of a Relational-Algebra Query
to a Distributed Database Using Statistical
Sampling Methods

5. TYPE OF REPORT ft PERIOD COVERED

Thesis

6. PERFORMING ORG. REPORT NUMBER

CAC #234
7. AUTHOR("»;

David A. Willcox

8. CONTRACT OR GRANT NUMBERf*.)

DCA100-75-C-0021

9 PERFORMING ORGANIZATION NAME AND ADDRESS

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

10. PROGRAM ELEMENT, PROJECT, TASK
AREA ft WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS

Joint Technical Support Activity
11440 Isaac Newton Square, North
Reston, Virginia 22090

12. REPORT DATE
August 1, 1977

13. NUMBER OF PAGES

69
14. MONITORING AGENCY NAME * ADDRESSf// di Iterant from Controlling Oltlca) 15. SECURITY CLASS, (of thla report)

UNCLASSIFIED

15*. DECLASSIFI CATION/ DOWN GRADING
SCHEDULE

16. DISTRIBUTION ST ATEMEN T (of this Report)

Copies may be obtained from the address in (9) above.

17. DISTRIBUTION STATEMENT (ot the abstract entered In Block 20, If different from Report)

No restriction on distribution

18 SUPPLEMENTARY NOTES

None

19 KEY WORDS (Continue on reverse side if necessary and identify by block number)

Distributed data management
Relational database
Sampling
Query optimization

20. ABSTRACT (Continue on reverse side if necessary and identity by block number)

A novel approach to the minimization of a relational-algebra query, where
the relations of the database are distributed among several computers, is
presented. A statistical sampling method is described which can be used to
develop the parameters to an integer-linear programming (ILP) problem. An
efficient method for solving the ILP is also presented.

DD , JAN 73 1473 EDITION OF 1 NOV 65 15 OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (IWien Data Entered)

